It goes by various names — the EmDrive, the Q-Drive, the RF Resonant Cavity, the Impossible Drive — but all the incarnations of the device claim to do the same thing: bounce some radiation around inside a closed chamber, and presto-chango you can get propulsion.
This is a big deal, because all forms of rocketry (and indeed, all forms of motion across the entire universe) require conservation of momentum. In order to set yourself in motion, you have to push off of something. Your feet push off of the ground, airplanes push themselves off of the air, and rockets push parts of themselves (e.g., an exhaust gas) out the back end to make them go forward.
But the EmDrive doesn't. It's just a box with microwaves inside it, bouncing around. And supposedly it is able to move itself.
The EmDrive doesn't just violate our fundamental understanding of the universe; the experiments that claim to measure an effect haven't been replicated. When it comes to the EmDrive, keep dreaming.
Explanations for how the EmDrive could possibly work go past the boundaries of known physics. Perhaps it's somehow interacting with the quantum vacuum energy of space-time (even though the quantum vacuum energy of space-time doesn't allow anything to push off of it). Perhaps our understanding of momentum is broken (even though there are no other examples in our entire history of experiment). Perhaps it's some brand-new physics, heralded by the EmDrive experiments.
Don't play with momentum
Let's talk about the momentum part. Conservation of momentum is pretty straightforward: in a closed system, you can add up the momenta of all the objects in that system. Then they interact. Then you add up the momenta of all the objects again. The total momentum at the beginning must equal the total momentum at the end: momentum is conserved.
The idea of the conservation of momentum has been with us for centuries (it's even implied by Newton's famous second law), but in the early 1900s it gained a new status. The brilliant mathematician Emmy Noether proved that conservation of momentum (along with other conservation laws, like conservation of energy) are a reflection of the fact that our universe has certain symmetries.
So, if the EmDrive demonstrates a violation of momentum conservation (which it claims to do), then this fundamental symmetry of nature must be broken.
But almost every single physical theory, from Newton's laws to quantum field theory, expresses space
symmetry (and momentum conservation) in their base equations. Indeed, most modern theories of physics are simply complicated restatements of momentum conservation. To find a breaking in this symmetry wouldn't just be an extension of known physics — it would completely upend centuries of understanding of how the universe works.
(This article has been partially reproduced from Live Science. You may read the full article here: https://www.livescience.com/can-emdrive-space-propulsion-concept-work.html)